RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta)					
B.A./B.Sc. SECOND SEMESTER EXAMINATION, AUGUST 2021 FIRST YEAR [BATCH 2020-23]					
Date : 10/08/2021 CHEMISTRY (HONOURS)					
Time : 11 am - 1 pm PAPER : III [CC3]	Full Marks : 50				
[Attempt <u>one</u> from <u>each unit</u>]					
<u>Unit : I</u>	[1×12]				
 a) Explain the following observation (i) The compound below exist 100 % in Keto form. 	[2×2]				
 O (ii) Triphenyburithyl radical (Ph₃C) is not so stabilized as expected. b) Which species in each of the following pairs is more stable and why? (i) Phenyl Cation and cyclohexyl cation. 	[2] [2]				
 (ii) Phenylanion and Cyclohexyl anion. c) Draw the orbital picture of carbine in Sp²- singlet, Sp² – triplet and sp d) What is primary kinetic isotopic effect? Explain with example. 	p- triplet states. [2] [2]				
2. a) Explain the formation of the product with mechanism. $ \underbrace{CHCl_3}_{KOH/\Delta} $	[2]				
b) Explain the observation with possible structure : $50 \% H_2SO_4$					
$(C_6H_5)_3C - OH \longrightarrow$ yellow colour solution $\int H_2O/H^+$ co	olourless solution. [2]				
c) Discuss the outcome of the reaction of singlet and triplet methylene with $cis - 2$ – butane with mechanism.	e carbine separately mixture [3]				
 d) Predict the product when 1,3,5 – trihydroxy benzene reacts with exce e) Draw a reaction co-ordinate diagram for the following reaction in wh is less stable. The transition state going from A to B is more stable th A K₁ → B K₂ → C 	an B to C. [2]				
(i) How many T.S. is there ? (ii) Which is the rate determing step in	reaction sequence. [1+1+1]				
<u>UNIT - II</u>	[1×13]				

3.	a)	Justify the following relative rates of reaction with MeBr in EtOH.		
		Necleophile	Relative rate	

$$PhS^{\Theta}$$
 5.0×10⁷

 PhO^{Θ} 2.0×10³

b) Convert :

c) Indicate with plausible mechanism what will happen in the following reaction.

d) Predict the product of the following reactions. Give mechanism.

(ii) +
$$SOCl_2 \xrightarrow{ether}$$

4. a) Predict the major product of the following reactions :

b) Convert :

c) Predict the product of the following reaction with stereochemistry :

[2]

[2]

[1+1]

[3]

[2]

[3×2]

Three -3 – brome -2 – butanel $\xrightarrow{\text{HBr}}$

- d) Justify : NH₂NH₂ is a better nucleophile than NH₃.
 e) What happens when F₃C CHCl₂ is heated with EtONa Na in ethanol? Give mecl
- e) What happens when $F_3C CHCl_2$ is heated with EtONa Na in ethanol? Give mechanism with evidence. [2]

g) Cite an S_N^2 reaction which is attended by racemisation.

<u>UNIT - III</u> [1×12]

[2]

[2]

[1]

[2]

5. a) Identify A and B in the following radiation sequence also give mechanism for each step. [1+3]

f)

- b) Carry out the following conversions and give plausible mechanisms for the reactions involved: [3×2]
 (i) 2 butane → 1 butane
 - (ii) Cyclohexene \rightarrow trans cyclohexane 1,2 diol
 - (ii) $1 butane \rightarrow 1,3$ butadiene
- c) Write down the steps involve for the following conversions.

6. a) Predict the products for the following reactions and also explain with plausible mechanism. $[4\times 2]$

b) Complete the following conversions with suitable steps or reagents.

7. a) Write down only the structure of the product (major) of the following reactions: $[3\times 1]$

- b) What happens when DNFB is treated with piperidine? Give mechanism and add a comment which distinguished it from aliphatic system.
- c) Distinguish π complex and ∂ complex.
- d) Predict the product of the following reactions. Give mechanism. [3×2]

[2]

b) Predict the product with mechanism:

c) Predict the favoured position of electrophilic substitution of the following and justify your answer in each case.

[3×2]

[2]